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Abstract
Continuous patient activity monitoring during rehabilitation, enabled by digital technolo-
gies, will allow the objective capture of real-world mobility and aligning treatment to each 
individual’s recovery trajectory in real time. To explore the feasibility and added value of such 
approaches, we present a case study of a 36-year-old male participant monitored continu-
ously for activity levels and gait parameters using a waist-worn inertial sensor following a 
tibial plateau fracture on the right side, sustained as a result of a high-energy trauma during 
a sporting accident. During rehabilitation, data were collected for a period of 553 days, with 
> 80% daytime compliance, until the participant returned to near full mobility. The participant 
completed a daily diary with the annotation of major events (falls, near falls, cycling periods, 
or physiotherapy sessions) and key dates in the patient’s recovery, including medical inter-
ventions, transitioning off crutches, and returning to work. We demonstrate the feasibility of 
collecting, storing, and mining of continuous digital mobility data and show that such data 
can detect changes in mobility and provide insights into long-term rehabilitation. We make 
both raw data and annotations available as a resource with the aspiration that further meth-
ods and insights will be built on this initial exploration of added value and continue to dem-
onstrate that continuous monitoring can be deployed to aid rehabilitation.
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Introduction

Assessment of mobility within a controlled or supervised environment [1] allows patient 
therapy to be tailored, aided in large part by our increasing ability to measure a patient’s 
performance using a combination of prescribed movement and sensor analytics [2, 3]. 
However, such snapshot assessments tend to have high inter-test variability, driven by patient 
motivation, short-term changes in fatigue, and other factors [4].

Recent research has shown that unsupervised, sensor-based monitoring of rehabilitation 
exercise in the home environment can both improve adherence and enable objective scoring 
as a basis for feedback [5], providing patients are sufficiently motivated [6]. However, 
improved performance assessment results and ability to perform rehabilitation exercises 
only partially capture the recovery process, and the same technologies could also be used to 
monitor long-term, real-world mobility behaviors. Understanding the relationship between 
performance changes, their consequence on behavioral patterns and ultimately subjective 
perceptions of independence and quality of life will enable the examination of the ecological 
validity of performance testing and hopefully a more complete chain of evidence demon-
strating the efficacy of new therapeutic interventions. This case study describes how 
continuous monitoring of a participant’s mobility could be used to track overall trends and 
specific events in the participant’s rehabilitation following a severe knee injury.

Case Report

Accelerometry
The patient was continuously monitored using a waist-worn inertial sensor (TRIUM 

actibelt RCT2, [7]), which recorded acceleration in 3-dimensions at a sampling frequency of 
100 Hz (12-bit resolution) and a range of ±6 g. Raw acceleration data was collected for a 
period of 553 days, from postinjury day 15 and post discharge day 6 following initial surgery, 
until the participant returned to near full mobility. Multiple devices, each of the same model, 
design, and placement were used over the observation period. Each individual device was 
worn continuously for a period of up to 75 days (mean 33 days) without requiring charging 
or other interaction and were otherwise self-managed by the participant. Recorded data was 
stored locally on the device and was downloaded periodically. Resulting recordings were 
then merged to form a single raw data file, which is made available as a set of text files.

Patient Diary
The patient completed a daily diary annotating periods of immobility, crutch-assisted 

walking, cycling, as well as unassisted walking. All major events, including falls, near falls, 
appointments with his doctors, and physiotherapy sessions were captured. The diaries are 
available as text files.

Derived Annotations
Further algorithmically derived annotations for bouts of walking were also included. 

Steps were detected by combining Continuous Wavelet Transformation-derived temporal 
gait features (adapted from [8]). Steps were then annotated with the estimated gait speed 
peak using supervised methods [9, 10] and were further classified as left and right foot steps 
using lateral acceleration patterns. We defined “bouts” as series of contiguous steps with no 
2 steps separated by more than an empirically defined threshold of 3 s. Step detection may 
produce false-positive steps for periodic non-walking behavior such as cycling, thus known 
cycling periods were removed from our analysis.
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How to Access
Written informed consent was obtained from the participant for the collection and use of 

the data, and a local ethics committee waiver was granted for the collection and publication 
of the data sets, which can be accessed via https://github.com/Novartis. 

Results

Participant Compliance
Treatment and rehabilitation for severe acute musculoskeletal injuries or chronic 

mobility disorders can take many years [11, 12]. It is therefore important to demonstrate that 
high density, high compliance monitoring in an uncontrolled environment is possible over 
such a time. The participant collected raw 3D accelerometry data over a period of 553 days 
at a mean compliance of 61% for the total monitoring period, and 84% during daytime hours 
(08: 00 to 22: 59). In total, 13,265 h of raw accelerometry data were collected during the 
observation period (∼14.3 billion data points, > 3.6 million detected steps). Figure 1 shows 
the compliance over the full observation period.

Changes in Standard Mobility Parameters during Rehabilitation
Rehabilitation from this type of knee injury focusses on regaining joint flexibility and 

muscle strength to allow the patient to regain normal mobility [13]. A key component of 
mobility is walking, typically measured in terms of step counts and gait speed. We developed 

0

2

4

6

8

10

12

14

16

18

20

22

Cl
oc

k 
tim

e
Wear time per hour

Ap
r–

11
–2

01
6

M
ay

–9
–2

01
6

Ju
n–

6–
20

16
Ju

l–4
–2

01
6

Au
g–

1–
20

16
Au

g–
29

–2
01

6
Se

p–
26

–2
01

6
Oc

t–
24

–2
01

6
No

v–
21

–2
01

6
De

c–
19

–2
01

6
Ja

n–
16

–2
01

7
Fe

b–
13

–2
01

7
M

ar
–1

3–
20

17
Ap

r–
10

–2
01

7
M

ay
–8

–2
01

7
Ju

n–
5–

20
17

Ju
l–3

–2
01

7
Ju

l–3
1–

20
17

Au
g–

28
–2

01
7

Se
p–

25
–2

01
7

Oc
t–

23
–2

01
7

Wear time

0
0.25
0.50
0.75
1.00

Fig. 1. Hourly wear time for the entire data collection period. The horizontal axis represents the date during 
the observation period, and the vertical axis represents a 24-h clock, with each vertical line therefore repre-
senting a given day. Wear time was summarized for each hour of each day and was projected to a color gra-
dient: yellow indicates no or a low hourly wear time and deep blue a high or a full wear time (1.0 corresponds 
to 60 min of wear time within 1 h). Wear time varied by the time of the day, generally being higher during 
daytime hours as compared to the night. 
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a step detection algorithm based on continuous wavelet transformation [8] and for each step 
estimated gait speed using a support vector regression model [10]. We observed that walking 
behavior differs strongly between bouts of different length, for example the average gait 
speed in longer bouts tends to be higher. 

To allow fairer comparisons over time, comparing similar bouts rather than general 
walking behavior, which may change markedly over the course of rehabilitation, we divided 
bouts into groups of 3 duration ranges. Figure 2 shows 3 panels with the mean daily step 
count and mean gait speed plotted against time, annotated with key dates in the participant’s 
rehabilitation. Each panel groups long, medium, and short bouts of walking; 101 to 500, 
between 21 and 100, and between 5 and 20 contiguous steps, respectively. 

We observed a sudden and rapid increase in the number of daily steps during the first 4 
months after surgery for long and medium bouts but less so for short bouts. The data also 
shows an immediate reduction in step counts, in particular for long bouts, after the partic-
ipant returned to full-time work (blue vertical dashed line, Fig. 2). We also observe a short-
term decrease in the number of steps and gait speed following the second surgery and the 
participant no longer requiring crutches. The variation in average daily steps per week was 
larger in longer bouts than for medium and short bouts, probably due to the larger range of 
steps for longer bouts (> 100–500 steps) than for medium (> 20–100 steps) bouts.

This suggests that it is possible to detect overall mobility recovery using our approach. 
The data also highlights some of the challenges in interpreting such data, for example the 
noticeable reduction in mobility upon returning to work. This is an interesting observation 
as typically any reduction in mobility would be interpreted as a negative outcome, yet in this 
case it is an indication of a positive transition in the participant’s rehabilitation, i.e., returning 
to work at their office-based job. Moreover, large absolute changes in step count or gait speed, 
or bout length distributions (see online suppl. Fig. 1; for all online suppl. material, see www.
karger.com/doi/10.1159/000490919) were only observed immediately following the initial 
injury and therefore do not fully describe the progression in the rehabilitation of the partic-
ipant from near immobility to returning to near normal daily mobility.

Changes in Gait Characteristics during Rehabilitation
We additionally sought to characterize the participant’s recovery by examining gait 

asymmetry. The participant suffered a unilateral injury on the right side, so we hypothesized 
that improving weight-bearing ability would be concomitant with a return to a more symmetric 
gait [14, 15]. We used lateral acceleration patterns to annotate detected steps as left or right 
footed. Figure 3 shows the mean daily stance time (time between heel strike and toe-off 
events, i.e., the amount of time the foot spends on the ground) for left and right foot steps for 
the full observation period. As for Figure 1, data is again grouped into long, medium, and short 
bouts and annotated with major events. We observe an overall reduction in stance times on 
both sides during rehabilitation, which match increased gait speeds as shown in Figure 2, and 

Fig. 2. Gait speed and the average step count over the entire observation period. Each panel shows, on the 
vertical axis, the average daily number of steps per week (blue dots and blue smoothed line [Loess] with the 
scale on the left-hand vertical axis) and the mean weekly gait speed (brown smoothed line [Loess] and the 
scale on the right-hand axis) over the full observation period (horizontal axis). The vertical red, blue, green, 
and red dashed lines indicate the following events: first time off crutches, return to work, 2nd surgery, and 
off crutches. Each panel represents bouts of continuous walking without interruption with 5–20 steps (short), 
21–100 (medium) steps, and 101–500 steps, right to left, respectively. Distributions and patterns of gait 
speed and the average step counts differ strongly between the different bout lengths (different panels). Large 
increases in step counts and gait speed were only seen immediately following the initial injury.
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that stance times for short bouts are generally higher, again matching the generally slower 
gait speed. 

Gait characteristics appear to better reflect the participants rehabilitation than the 
general walking parameters, as shown in Figure 2, as there is a clear difference in stance time 
for the left and right (affected) side at the beginning of the study, converging at around 0.7 s 
(in long bouts) for both sides. Recovery from the 2nd surgery was faster than after the 1st 
surgery, shown by the quicker convergence of stance times after the participant stopped 
using crutches for the second time, possibly due to complications, including deep vein throm-
bosis, following the first surgery.

These results show the value of capturing continuous raw accelerometry data, which 
enables deeper re-examination of recovery. In this case study, we demonstrate the feasibility 
of long-term digital monitoring of rehabilitation and the potential to derive insights mean-
ingful to both patients and practitioners. We show that gait speed is affected during rehabili-
tation and that measures of gait symmetry further help describe major phases and transitions 
in recovery. It should be noted that a return to baseline gait characteristics (e.g., gait speed or 
gait symmetry) may not uncover all aspects of recovery; for example, a patient’s gait may 
increase over time after injury, but with an altered unhealthy walking style. We hope that 
further work will enable a more complete understanding of parameters relevant to mobility.

Minimum Required Compliance
The high level of compliance seen in this case study may, however, not be possible or 

necessary in other settings, so we also investigated what minimal level of compliance would 
be required to observe the same trends. We simulated reduced compliance, or a less 
burdensome patient instruction, by down-sampling the data set to simulate shorter and 
sparser periods of monitoring. Figure 4 shows that for these parameters, a wear time of only 
6 continuous days per month and only 6 h wear time per day are required to capture long-
term trends and changes over time in weekly averages. 

It is important to note that detailed information gets lost with more sparse compliance, 
for example, we are less able to accurately capture periods of high variation (e.g., immediately 
after surgery) or specific rare events (e.g., falls), and that any outliers that are captured will 
have a stronger influence on observed trends. Furthermore, we note that 6 continuous days 
of monitoring per month results in less variation in weekly average trends than 6 randomly 
sampled days per month, or more widely dispersed but larger blocks (e.g., 5 2-month periods). 
As a consequence, researchers should carefully balance instructions given to patients with 
the needs of their study; if high variability (for example early in rehabilitation) or rare events 
are expected, then teams must ensure sites, and patients are sufficiently motivated and 
compliant to capture informative data. It is worth noting that the participant-provided 
feedback on their experience and their motivation was improved by sharing their data and 
results: “I liked having a report every month or so to track my recovery. As my recovery 
progressed there were fewer ‘milestones’ (first steps, return to sports etc.) compared to the 
early stages so it was motivating to see that I was continuing to improve.”

Fig. 3. Stance time per foot over the entire data collection period. Each panel represents, on the vertical axis, 
the average stance time (time spent on 1 foot) per week while walking over the entire study duration (hori-
zontal axis). The red data set is for the left foot and the blue-green data set for the right foot (affected side). 
See the legend of Figure 2 for the details on the annotation. Differences in stance time (interpreted as gait 
asymmetry) closely reflect major events (for example, the most extreme differences are seen around the first 
and second surgery) and overall trends in rehabilitation.
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Conclusions

This case study demonstrates that long-term, continuous, real-world monitoring of 
mobility is feasible at high levels of compliance, and that data captured during this period 
describes major trends and events in the participant’s rehabilitation. We show that classic 
measures of overall walking ability (number of steps and gait speed) are less informative in 
this setting than measurements of gait symmetry (stance time for each foot). We also demon-
strate that such a high compliance is not required for capturing these major trends in reha-
bilitation but are, however, required to capture rare events such as falls.

While we do clearly see trends over time that correspond to major events in the partici-
pant’s rehabilitation, it is important to note that the methods described here in 1 participant 
require careful and appropriately powered validation against gold-standard methods [9] to 
evaluate their accuracy, sensitivity, and ability to detect clinically meaningful changes and 
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their relation to orthogonal measurements or data streams, for example muscle activation 
captured via electromyography, as sometimes done for osteoarthritis patients [16, 17]. It 
should also be recognized that gait is not uniform between patients nor over time, particu-
larly during injury, recovery, or intervention. Validation must therefore cater for this diversity 
through using a sufficiently heterogeneous cohort to characterize the limitations of any novel 
algorithm.

Despite the value described here, one limitation of accelerometry is that it does not 
directly capture contextual annotation (i.e., environmental conditions or other factors that 
would influence, or aid the interpretation of, captured data), reducing our ability to make 
meaningful comparisons over large time periods. In this case study, we group bouts of walking 
by length to allow comparison of similar periods of walking over time; however, it is likely 
that further annotation would help manage variation due to environmental factors and allow 
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Fig. 4. Required wear time and 
participant compliance. Each pan-
el represents the average stance 
time (time spent on 1 foot) per 
week while walking (vertical 
axis) over the entire study dura-
tion (horizontal axis). The rows of 
the panels represent long (top), 
medium (middle), and short (bot-
tom) bouts, the columns of the 
panels represent either the full 
data set (left), the same data set 
down-sampled to only 6 continu-
ous days of wear time per month 
(right), and to 5 2-month periods 
of wear time. The red data set is 
for the left foot and the blue-green 
data set for the right foot (affected 
side). See the legend of Figure 2 
for details on the annotation. The 
level of compliance observed in 
this case study is exceptional, and 
we estimate that 6 continuous 
days per month, with 6 h per day 
(right panel), is sufficient to cap-
ture the major observations seen 
in the full data set (left panel), 
while a similar total wear time 
grouped into 2-month blocks is 
not.
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a more sensitive interpretation of the patterns observed. Precedence for such approaches 
exists, with studies already using mobile technologies to trigger or annotate inertial sensor 
and patient reported outcome data capture using environmental cues [18, 19].

This case study is a demonstration of the added value for approaches aiming at the digital 
continuous monitoring of patient mobility. We make our data available with the intention that 
other groups will identify further insights (e.g., other aspects of mobility beyond steps and 
gait speed including stair climbing or turning [20]), apply these methods to other indications 
(e.g., neurological conditions such as Parkinson’s disease [5]) or use the data to develop 
device-agnostic code and algorithms [21]. This should enable application of these methods to 
the rapidly evolving technology landscape [6].
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