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Head stabilization is fundamental for balance during locomotion but can be impaired

in elderly or diseased populations. Previous studies have identified several parameters

of head stability with possible diagnostic value in a laboratory setting. Recently, the

ecological validity of measures obtained in such controlled contexts has been called

into question. The aim of this study was to investigate the ecological validity of previously

described parameters of head stabilization in a real-world setting. Ten healthy subjects

participated in the study. Head and trunk movements of each subject were recorded with

inertial measurement units (IMUs) for a period of at least 10 h. Periods of locomotion

were extracted from the measurements and predominant frequencies, root mean

squares (RMSs) and bout lengths were estimated. As parameters of head stabilization,

attenuation coefficients (ACs), harmonic ratios (HRs), coherences, and phase differences

were computed. Predominant frequencies were distributed tightly around 2 Hz and ACs,

HRs, and coherences exhibited the highest values in this frequency range. All head

stability parameters exhibited characteristics consistent with previous reports, although

higher variances were observed. These results suggest that head stabilization is tuned to

the 2 Hz fundamental frequency of locomotion and that previously described measures

of head stability could generalize to a real-world setting. This is the first study to address

the ecological validity of these measures, highlighting the potential use of head stability

parameters as diagnostic tools or outcome measures for clinical trials. The low cost and

ease of use of the IMU technology used in this study could additionally be of benefit for

a clinical application.

Keywords: head stabilization, accelerometry, motion sensors, gait, balance

1. INTRODUCTION

During locomotion, reflexive head movements operate to minimize horizontal head translation
(Cromwell et al., 2001a; Mazzà et al., 2009) and simultaneously compensate for vertical translation
by pitching the head (Pozzo et al., 1990; Hirasaki et al., 1999). These stabilization behaviors
are thought to be crucial for effective control of both balance and locomotion because they
reduce undesired variability of vestibular and visual sensory inputs (Pozzo et al., 1990). In elderly
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individuals, head stabilization is compromised during both
steady-state walking (Cromwell et al., 2001b) and gait initiation
(Laudani et al., 2006; Maslivec et al., 2018). Impaired head
stabilization has also been associated with disorders such as
Parkinson’s disease (PD) (Latt et al., 2009; Buckley et al., 2015),
multiple sclerosis (MS) (Psarakis et al., 2018) and bilateral
vestibular defects (Pozzo et al., 1991).

Motion capture and accelerometry are widely used in
the analysis of head stabilization during human locomotion
(Pozzo et al., 1990; Hirasaki et al., 1999; Kavanagh and
Menz, 2008). However, studies using motion capture systems
are usually constrained to a laboratory setting by design.
Similarly, previous studies using wearable sensors have been
limited by the need to instruct and supervise subjects and
faithfully annotate periods of locomotion. Several recent
studies have questioned the ecological validity of measurements
obtained in such controlled contexts, i.e., how well these
measurements generalize to real world conditions (Stellmann
et al., 2015; Brodie et al., 2017). An alternative approach,
known as ecological momentary assessment (EMA) (Shiffman
et al., 2008), advocates the sampling of clinically relevant
parameters in a subject’s natural environment rather than a
clinical setting.

In support of EMA, researchers have observed that clinical
measures such as 10 m walk test times do not significantly
correlate with more objective outcomes such as fall risk, raising
doubts concerning the clinical relevance of these measures
(Brodie et al., 2017). The frequently used 6 min walking test
has been challenged by the fact that in many diseased or elderly
populations, 6 min of uninterrupted walking rarely occur during
daily life (Stellmann et al., 2015). While there are some clinical
tests whose results correlate with objective outcomes (such as
clinical assessment of gait speed, Albrecht et al., 2001), these
examples highlight the need to validate standardized measures
in a real-world context.

Wearable accelerometry devices have been suggested for
sampling human motion during daily life (Motl et al., 2012) and
can be used as a way to assess head stabilization performance
in the spirit of EMA. Compared with clinical tests, they
provide a cost-effective and straightforward method of recording
ecologically valid measures. Previous studies of vestibular
stimulation have used these kinds of sensors to address head and
whole body motion in more realistic contexts, but were either
constrained to pre-defined activities (Carriot et al., 2014, 2017)
or lacked measurements of angular velocity (MacDougall, 2005).

In order to assess whether they are indicative of real-life
locomotor function, previously established measures of head
stability (Hirasaki et al., 1999; Mazzà et al., 2009; Bellanca
et al., 2013) need to be evaluated with respect to their
ecological validity. Results obtained from a sample of healthy
individuals could then be used as a normative baseline for
future studies involving populations with balance, gait or
neurological disorders.

Therefore, the aims of this study were: (i) to record
a dataset of real-world human motion of trunk and head
with wearable sensors, (ii) to compute previously described
parameters of head stabilization from this data, and (iii)

to compare the computed parameters with previous results
obtained in controlled environments.

2. MATERIALS AND METHODS

2.1. Subjects
A convenience sample of ten healthy human subjects (five male,
five female, age 21–28, most of them students participating in
lecture “Clinical Applications of Computational Medicine" at
the Technical university of Munich) with no history of balance
or gait disorders participated in the experiment. All subjects
signed an informed consent form compliant with the European
General Data Protection Regulation and gave explicit consent
to the publication of the recorded data. The study protocol was
approved by the institutional review board of the Sylvia Lawry
Center for Multiple Sclerosis Research.

2.2. Sensor Devices
We used a small, self-contained IMU to record both linear
acceleration and angular velocity of the human head and trunk.
The device (Actigraph GT9X Link) was chosen for its ability
to continuously record accelerometer and gyroscope data at a
sampling rate of 100 Hz for 24 h. To record head motion, the
sensor unit was firmly attached to the inside of a baseball cap
that was worn by the subjects. To record trunk motion, an
IMU of the same model was attached to a specialized neoprene
belt (actibelt flex-belt, Trium Analysis Online GmbH, Munich,
Germany) worn at the waist under the clothing. The actibelt
system itself is frequently used in clinical accelerometry studies,
but was not used in this study because in its current version it is
not equipped with a gyroscope.

2.3. Data Acquisition
Subjects were outfitted with the recording equipment in the
morning of a typical work/university day and instructed to wear
the equipment for at least 10 h. They were instructed to take note
of periods during which they took off either sensor unit and these
periods were subsequently excluded from analysis. The recording
equipment was returned the next morning.

The IMUs were synchronized by knocking both devices
against each other at the beginning and the end of each
recording. This created clearly visible peaks in the accelerometer
measurement that were used to correct timing offsets and
drifts between the devices. All subjects performed a calibration
routine for both sensor units in order to align the sensor
coordinates with head- and trunk-fixed reference frames. For the
head device, they first held their heads in a slightly forward-
pitched position that aligned Reidâ’s plane (MacNeilage and
Glasauer, 2017) with an earth-horizontal plane. Afterwards, they
nodded their heads five times around the pitch axis. This yields
a unique transformation that rotates the acceleration due to
gravity to be purely vertical and rotates the angular velocity
to be purely around the medial/lateral axis for this calibration
routine (resulting in a head-fixed reference frame as shown in
Figure 1A). A similar routine was performed for the trunk device
which was calibrated such that the acceleration due to gravity was
purely vertical when the subjects stood up straight.
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FIGURE 1 | (A) Axes of the head sensor coordinate system. The vertical axis is adjusted to be perpendicular to Reid’s plane. This coordinate system remains

head-fixed during all translations and rotations. (B) Axes of the aligned coordinate system. The vertical axis points in the direction of gravity (g). The system remains

world-fixed during roll and pitch rotations (left and right) but remains head-fixed during yaw rotations (middle) and translations.

2.4. Coordinate Frame Transformations
The IMUs used for this study record linear acceleration and
angular velocity, but provide no direct information about
the orientation of the device in world coordinates. The
calibration approach outlined in the previous section yields
a head/trunk-fixed coordinate system (Figure 1A). However,
for comparability with previously reported results obtained
in laboratory settings (Hirasaki et al., 1999; Menz et al.,
2003; Mazzà et al., 2009) it is necessary to transform the
measurements into a frame of reference whose vertical axis
remains parallel to the direction of gravity. Reference frames in
these studies are defined as right-handed coordinate systems with
the vertical axis pointing upwards in the direction of gravity, the
anterior/posterior axis pointing in the direction of the subject’s
motion and the medial/lateral axis pointing to the left of the
motion direction (Figure 1B).

2.5. Estimation of the Direction of Gravity
From IMU Data
Gravitational acceleration g is linked to linear acceleration a
and angular velocity through the following equations (Glasauer,
1992):

g = a− i (1)

∂g

∂t
= ω × g (2)

where i denotes the inertial acceleration of the device. Various
filters are described in the literature that combine the linear
acceleration and angular velocity measurements to produce
an estimate of orientation. We propose a basic sensor fusion
approach (Table 1) that we show to be sufficiently accurate for
typical trajectories occurring during human locomotion.

The angular velocity was high-passed at 0.1 Hz with a 5th-
order Butterworth filter to remove errors due to gyroscope drift.
The linear acceleration was low-passed with the same type of

TABLE 1 | Description of the gravity filter algorithm for estimating gravity direction

from IMU data.

Inputs Linear acceleration in sensor coordinates a(t)

Angular velocity in sensor coordinates ω(t)

Correction factor α

Acceleration due to gravity in world coordinates gW

Outputs Estimate of acceleration due to gravity in sensor

coordinates g(t)

Quaternion representing sensor orientation in aligned

coordinates q(t)

Description Start with initial estimate g(0) = gW , for all t ∈ 1..T:

1. Compute estimate of angular displacement:

φ(t) = ω(t)1t

2. Compute estimate of gravity: g(t) = φ(t)× g(t− 1)

3. Update estimate with linear acceleration:

g(t) = g(t)+ (1− α)a(t)

4. Normalize estimate g(t) = g(t)/|g(t)|

5. Compute q(t) as the quaternion transforming

g(t) into gW :

a. Normalized axis of rotation: n = gW × g(t), n = n/|n|

b. Angle of rotation: = cos
−1

(

< gW , g(t) >
)

c. Quaternion from axis-angle representation:

q(t) = R(n, θ )

The correction factor α ∈ [0, 1] determines the weight of ω in the final estimate; an α of

0 means that ω is not used at all, while an α of 1 means that the linear acceleration is

ignored. T is the number of samples and ∆t is the time difference between two samples,

corresponding to 10 ms at a sampling rate of 100 Hz. < gW ,g(t) > denotes the inner

product between gW and g(t) and R(n, θ ) computes the quaternion from the axis-angle

representation of the rotation:

R(n, θ ) =
(

cos(θ/2), nxsin(θ/2), nysin(θ/2), nzsin(θ/2)
)

.

filter to reduce the influence of transient accelerations on the
estimate. The estimates of orientation and acceleration due to
gravity from the filter could then be used to transform the raw
acceleration measured by the sensor into net inertial acceleration
in aligned coordinates:

iA = rot(q−1, a− g) (3)
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where rot(q, v) denotes the rotation of the vector v by the
quaternion q. It should be noted that step 5 of Table 1 ensures
that the transformation has no yaw rotation component since q(t)
is computed from a rotation around the axis n which is always
perpendicular to gW . For consistency with previously reported
results (Hirasaki et al., 1999) where translations were described
in a world-fixed, but rotations were described in a head/trunk-
fixed frame, we did not transform the angular velocity into the
aligned coordinate system.

We recorded a short dataset of one subject wearing one
IMU attached to a baseball cap on the head. The sensor was
mounted facing upwards on a plastic plate equipped with four
optical markers for a motion capture system (8 Qualisys Oqus
100 cameras and Qualisys Track Manager software, version 2.9,
Qualisys AB, Göteborg, Sweden). The subject performed different
locomotor activities (walking, running) as well as spontaneous
head movements while sitting for about 8 min. Afterwards,
the sensor apparatus was removed from the baseball cap and
rapidly swung around, creating high accelerations, and rapid
orientation changes of the device for about 1 min. The motion
capture data was used as a gold standard for evaluating the
accuracy of the orientation estimate as well as finding the optimal
parametrization of the algorithm.

We investigated the influence of the low-pass cut-off
frequency of the linear acceleration (fLP) as well as the correction
factor α on the estimate quality and compared our approach with
a previously described complementary filter method (Wetzstein,
2017). The accuracy was measured with the geodesic distance
from the estimated quaternion q to the gold standard quaternion
qGS (corresponding to the angle of the shortest arc between the
two orientations, Huynh, 2009):

d = cos−1
(

2 < q, qGS >2 −1
)

(4)

Both filter algorithms were implemented in Python 3.6 using
the just-in-time compilation tools of the numba library (version
0.42) to greatly enhance execution speed. Run times were
compared on an Intel Core i7-7700K CPU in single-threaded
execution at a clock rate of 4.2 GHz. Based on the results of
this analysis (see Supplementary Material), accelerometer and
gyroscope data were transformed to the respective reference
frames before further processing.

2.6. Step Detection
In order to isolate periods of locomotion for analysis, we used
a step detection method based on the inertial acceleration of the
trunk sensor in aligned coordinates.We recorded a dataset of one
subject wearing the trunk sensor, performing different locomotor
activities at different speeds, including walking, running, stair
walking, and cycling. This data was used to parametrize a peak
detector for extracting possible steps as well as to determine
discriminative features that distinguish cycling from other types
of motion.

Peaks were detected in the vertical axis component with a
minimum height of 0.2 g, prominence of 0.4 g and distance of
20 ms (corresponding to a maximum detectable step frequency
of 5 Hz, Schimpl et al., 2011). For each peak, we computed the

short-time power spectrum S(f ) of the linear acceleration in all
three spatial axes with a segment length of 1,024 samples centered
around the peak, weighted with a Blackman window function.
The power spectrum was used to determine predominant
frequency in each axis, i.e., the frequency with the highest
spectral power. We investigated the distribution of RMS vertical
accelerations as well as the difference between predominant
frequencies in the vertical (V) and medial/lateral (ML) direction
and used the results as criteria for the exclusion of cycling periods
(see Supplementary Material).

The step detection method was applied to the trunk sensor
data for each of the 10 subjects. Since we limited our analysis to
frequencies above 1 Hz (see results), detected steps were grouped
together as bouts if the time difference between two consecutive
steps was smaller than 1 s. Bouts of single steps, i.e., where no
other steps where detected within 1 s before and afterwards, were
subsequently excluded from further analysis.

2.7. Predominant Frequency as a Proxy for
Walking Speed
We determined the predominant frequencies of head and trunk
accelerations for each step in all three spatial axes using the same
short-time power spectrum approach as described above, albeit
with a segment length of 512 samples. We used a shorter segment
length than in the step detection procedure as it increased
the temporal resolution at the expense of frequency resolution,
yielding more accurate results for short bouts. We also calculated
the magnitude of accelerations using the RMS for each step
segment in all three directions. Furthermore, means and standard
deviations of trunk predominant frequency in the V direction
were calculated for each bout.

In Hirasaki et al. (1999), the authors showed a strong
link between walking velocity and predominant frequency of
vertical head translation. While we did not validate the exact
correspondence for our data, predominant frequency of vertical
head acceleration was used as a proxy measure for gait speed,
allowing qualitative comparisons between previously published
results and ours. In the following, we use the term “predominant
frequency” as a shorthand for predominant frequency of vertical
head acceleration.

2.8. Assessment of Head Stabilization
During Locomotion
2.8.1. Attenuation Coefficient

The reduction of linear accelerations through the upper body was
quantified for each step segment using the AC between trunk and
head. Segments consisted of 512 samples centered around the
peak and were weighted using a Blackman window function in
order to decrease the influence of non-locomotor accelerations
for short bouts. ACs were calculated in the anterior/posterior
(AP), ML, and V directions using the RMS values of head (AH)
and trunk acceleration (AT) (Mazzà et al., 2009) as:

AC = 1−
AH

AT
(5)
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Positive values indicate an attenuation of head accelerations
with respect to trunk accelerations whereas negative values
correspond to increased accelerations at the head when
compared to the trunk.

2.8.2. Harmonic Ratio

Regularity and smoothness of motion was quantified using the
HR for both head and trunk accelerations. In the AP and V
directions, the HR was calculated as the total spectral power of
the even harmonics divided by the total spectral power of the odd
harmonics of the predominant frequency:

HR =

∑N
k S

(

2kfdom
)

∑N
k S

(

2(k+ 1)fdom
)

(6)

where fdom denotes the predominant frequency of the segment
in the respective direction and N = 10 is the number of
harmonics we considered. Because of the biphasic nature of
accelerations within strides (two steps), high values indicate
that acceleration patterns remain in phase across stride cycles
and are associated with stable gait (Menz et al., 2003). In
the ML direction, the HR was calculated inversely due to
the fact that lateral motion is monophasic within one stride
(left and right step, Lowry et al., 2012):

HR =

∑N
k S

(

2(k+ 1)fdom
)

∑N
k S

(

2kfdom
)

(7)

2.8.3. Coherence

We quantified head-trunk coordination and compensatory
head motion during locomotion using the coherence
(Hirasaki et al., 1999):

K2
xy(f ) =

Sxy(f )
2

Sxx(f )Syy(f )
(8)

where Sxy(f ) denotes the cross-power spectrum of signals
x and y, Sxx(f ) is the power spectrum of signal x, and
Syy(f ) is the power spectrum of signal y. Coherence values
were computed between head pitch velocity and vertical
head acceleration and between head pitch velocity and trunk
pitch velocity.

As the coherence for the power spectrum of a single segment is
ill-defined, we used an extended segment length of 1,024 samples
centered around every step. Each segment was divided into 5
sub-segments of 512 samples with an overlap of 128 samples.
This approach guaranteed a well-defined coherence measure for
each segment with the same frequency resolution as in the rest of
the experiments.

2.8.4. Phase Difference

As another measure of head stabilization we used the
phase difference between two signals x and y (Hirasaki
et al., 1999). This was calculated by determining the peak
of the cross-correlation between x and y, in segments
of 512 samples centered around each detected step. The
time-lag of this peak was then transformed into a phase
difference by dividing by the period length of signal x,
estimated via auto-correlation. Phases differences were
calculated between vertical head acceleration and head pitch
velocity and between vertical head acceleration and trunk
pitch velocity.

Since we computed phases differences between acceleration
and pitch velocity, we corrected the resulting differences to
be comparable with previously reported results that compared
vertical displacement and pitch angle (Hirasaki et al., 1999). Pitch
angle is obtained from pitch velocity by integrating once (taking
into account some initial value) and translation is obtained
from acceleration by integrating twice. Since the integration of a
sinusoidal signal introduces a phase shift of−π

2 , the overall phase
correction for the difference is 2

(

−π
2

)

−
(

−π
2

)

= −π
2 .

FIGURE 2 | Relationship between predominant frequency of vertical head acceleration and (A) predominant frequency of vertical trunk acceleration. (B) walking

velocity (Figure 8B from Hirasaki et al., 1999). Boxes above 1.2 Hz in (A) are not visible because all of the samples between the first and third quartile had the

same value.
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2.9. Statistical Analysis
The influence of the predominant frequency on the calculated
measures was estimated with a Kruskal-Wallis test by calculating
an effect size as follows (Tomczak and Tomczak, 2014):

η2 =
H − k+ 1

n− k
(9)

where H is the Kruskal-Wallis statistic, k is the number
of predominant frequency groups and n is the number of
samples. Effect sizes were considered small for η2 < 0.04,
intermediate for 0.04 < η2 < 0.11 and large for η2 > 0.11
(Cohen, 1988). For pairwise comparisons between independent
samples (e.g., between previously reported results and ours),
Welch’s two-sample t-test was used. Pairwise comparisons
between dependent samples (e.g., between different spatial
directions) were performed with a paired t-test. For each
test, we reported p-values and considered results to be
significant if p < 0.01. However, since this was an

exploratory study, statistical power of these tests might
be limited.

Statistical analysis was performed with the stats module of
the scipy library (version 1.2.0) in Python 3.6. Results of our
analyses were plotted as a function of predominant frequency
using boxplots. Boxes indicated the range from the first to the
third quartile and the band indicated the median. Whiskers were
plotted from the lowest sample within 1.5 times the interquartile
range (IQR) of the lower quartile to the highest sample within 1.5
times the IQR of the upper quartile. Due to the large amount of
samples, outliers were not plotted. The number of samples was
n = 34455, the number of steps that fell within the analyzed
predominant frequency range (93.74% of all detected steps, see
results and Supplementary Material).

3. RESULTS

Predominant frequency of vertical trunk acceleration was
strongly correlated with predominant frequency of vertical

FIGURE 3 | (A) Distribution of predominant frequency of vertical head acceleration. (B) Boxplot of RMS vertical head accelerations as a function of predominant

frequency. (C) Distribution of RMS vertical head accelerations (logarithmic scale). (D) Boxplot of RMS vertical trunk accelerations as a function of predominant

frequency. (E) Distribution of RMS vertical trunk accelerations (logarithmic scale).
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head acceleration between 1 and 2.6 Hz (η2 = 0.887,
p < 0.001, Figure 2A). Figure 2B shows a re-plot of Figure
8B from Hirasaki et al. (1999), showing the relationship
between walking velocity and predominant frequency of vertical
head acceleration. In order to make our results comparable
to previously published results, we limited our analysis to
segments with head predominant frequencies between 1 and
2.6 Hz, corresponding to the range of frequencies associated
with walking speeds between 0.6 and 2.2 m/s determined in
Hirasaki et al. (1999).

Predominant frequency of vertical head acceleration was
approximately normally distributed around 1.86 Hz with a
standard deviation of 0.23 Hz (Figure 3A). RMS vertical
accelerations exhibited a distribution skewed toward higher
RMS values with a peak at 0.3 g for both head and trunk
(Figures 3C,E). RMS accelerations increased with predominant
frequency for both head (η2 = 0.375, p < 0.001, Figure 3B) and
trunk (η2 = 0.377, p < 0.001, Figure 5D) and exhibited broader
distributions with higher frequencies. This indicated a strong
preference of subjects to move with a fundamental frequency
close to 2 Hz and maintaining moderate accelerations of both
head and trunk.

Distribution of bout lengths decreased logarithmically with
the logarithm of bout length (Figure 4A). The effect of bout
length on per-bout mean predominant frequencies was small
(η2 = 0.022, p < 0.001), although the median seemed to
increase with larger bout lengths and they exhibited broader
distributions for shorter bouts (Figure 4B). Standard deviations
of predominant frequencies showed an intermediate dependence
on bout length (η2 = 0.101, p < 0.001) and exhibited smaller
variances above 100 steps (Figure 4C). This showed a clear
preference of subjects toward walking short bouts while longer
bouts seemed to be connected to an increase of predominant
frequency and a simultaneous decrease of variability.

The effect of predominant frequency on ACs in V direction
was small (η2 = 0.039, p < 0.001, Figure 5A). However, ACs
increased with predominant frequency up to 2 Hz and afterwards
decreased with higher frequencies in both AP (η2 = 0.165,
p < 0.001) and ML (η2 = 0.144, p < 0.001) directions
(Figure 5A). Pairwise comparisons between directions revealed
significant differences between each pair of directions (p <

0.001), with ACs in V direction being lower than those in AP and
ML directions. These differences were especially evident around 2
Hz, corresponding to the frequency range containing the highest
number of samples (see also Figure 3A). ACs in V and AP
direction differed significantly (p < 0.001) from those reported
by Mazzà et al. (2009), but not in the ML (p = 0.043) direction
(Figure 5B). We found the most substantial difference in the
V direction where we observed higher values, indicating that
real-world vertical accelerations of the head are more strongly
attenuated than previously reported.

The influence of predominant frequency on HRs was small
across all directions for both head and trunk (η2 < 0.04,
p < 0.001), although we observed higher standard deviations
between 2 and 2.4 Hz, especially in the AP and V directions
(Figures 6A,C). Distributions differed significantly between each
pair of directions (p < 0.001). Statistical testing revealed no

FIGURE 4 | (A) Distribution of bout lengths (logarithmic scale). (B) Boxplot of

mean predominant frequency for each bout as a function of bout length.

Broader distributions indicated a higher variance of predominant frequencies

between bouts. (C) Boxplot of standard deviation of predominant frequency

for each bout as a function of bout length. Higher values indicated a higher

variance of predominant frequencies within bouts.

significant differences between our results and those reported
by (Menz et al., 2003) except for the head in the ML direction
(p < 0.001), but we saw higher standard deviations for all axes
and both sensor locations (Figures 6B,D). The high values of
HRs measured around 2 Hz are an indication of highly regular
and stable gait in this frequency range.

There was an intermediate effect of predominant frequency on
coherence both between vertical head acceleration and head pitch
velocity (η2 = 0.109, p < 0.001, Figure 7A) and between head
and trunk pitch velocity (η2 = 0.084, p < 0.001, Figure 7C).
We observed an increase of mean coherence value around 2.15
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FIGURE 5 | Attenuation coefficients of accelerations between trunk and head in anterior/posterior (AP), medial/lateral (ML) and vertical (V) directions. (A) Attenuation

coefficients as a function of predominant frequency. (B) Comparison between mean +/– std attenuation coefficients from Mazzà et al. (2009) and our data. Means for

Mazzà et al. (2009) were computed as the average of the means of the two groups (male, female). Standard deviations were estimated by multiplying the reported

standard error of the mean by the square root of the sample size and then computing the square root of the sum of squares of the groups. See also first row of

Figure 2 from Mazzà et al. (2009) for comparison .

FIGURE 6 | Harmonic ratios of accelerations in anterior/posterior (AP), medial/lateral (ML) and vertical (V) directions. (A) Boxplot of harmonic ratios of head

accelerations as a function of predominant frequency. (B) Comparison between mean ± std harmonic ratios (head) from Menz et al. (2003) and our data. (C) Boxplot

of harmonic ratios of trunk accelerations as a function of predominant frequency. (D) Comparison between mean ± std harmonic ratios (trunk) from Menz et al. (2003)

and our data. See also Figure 6 from Menz et al. (2003) for comparison .

Hz as well as a decrease of standard deviation. Coherence values
differed significantly between head and trunk in the predominant
frequency range from 1.37 to 2.34 Hz. These results are consistent
with those reported in Hirasaki et al. (1999) (Figures 7B,D),

although it should be noted that they obtained values for vertical
displacement and pitch angle instead of vertical acceleration
and pitch velocity. However, since the coherence measures the
similarity between signals at the predominant frequency, a mere
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FIGURE 7 | Coherence at predominant frequency. (A) Boxplot of coherence between vertical head acceleration and head pitch velocity as a function of predominant

frequency. (B) Coherence between vertical head displacement and head pitch angle as a function of walking velocity [Figure 9A from Hirasaki et al. (1999)]. (C)

Boxplot of coherence between head pitch velocity and trunk pitch velocity as a function of predominant frequency. (D) Coherence between head pitch angle and trunk

pitch angle as a function of walking velocity [Figure 9B from Hirasaki et al. (1999)] .

phase shift as introduced by the integration of a sinusoidal signal
component should not alter the value of the coherence function.
These results demonstrate a tight coupling between both head
pitch and vertical head translation as well as head and trunk pitch
around the preferred predominant frequency of 2 Hz.

Predominant frequency had a small effect on phase differences
for both head (η2 = 0.006, p < 0.001, Figure 8A) and trunk
(η2 = 0.022, p < 0.001, Figure 8C). There was a significant
difference between head and trunk for the whole analyzed range
of predominant frequencies except for 1.17, 1.37, and 2.15 Hz.
While the overall mean phase differences were comparable to
those reported in Hirasaki et al. (1999), we did not observe
a dependence on predominant frequency (Figures 8B,D). This
indicates a phase lock between vertical head displacement and
head/trunk pitch angle, independent of predominant frequency.

4. DISCUSSION

Due to the limited ecological validity of measurements obtained
in a controlled laboratory setting (Motl et al., 2012; Brodie
et al., 2017), there is a need for methods to measure and
analyze head stabilization and head-trunk coordination in real-
world scenarios. For clinical applications, it is first necessary to
obtain normative data from healthy individuals as a baseline for

possible diagnostic use. In this study, we measured head and
trunk motion in an ecologically valid context and calculated
several derivative measures of head stabilization performance.
These measures were chosen based on those reported in the
literature, and they evaluate horizontal head stabilization as
well as head motion that compensates for vertical translation.
Overall, our measures based on real-world accelerometry data
agree quite well with similar measures derived from laboratory-
based data, suggesting that these methods for quantifying head
stabilization performance could generalize. However, we noticed
some important differences and in general we observed larger
variances in the distribution of these measures.

Predominant frequencies of motion were tightly coupled
between trunk and head (Figure 2) and exhibited a narrow
distribution around 2 Hz (Figure 3). Incidence of bout lengths
decreased strongly toward longer bouts, but means and standard
deviations of predominant frequencies did not strongly depend
on bout length, showing only a small increase of means and
simultaneous decrease of standard deviations toward longer
bouts (Figure 4). These findings seem to confirm previous
reports (MacDougall, 2005) which identified 2 Hz as the
fundamental frequency of human locomotion across a wide range
of activities. The observed changes in predominant frequency
distribution as a function of bout length indicate a tendency
of subjects toward more goal-directed and stable walking for
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FIGURE 8 | (A) Boxplot of corrected phase difference between vertical head acceleration and head pitch velocity as a function of predominant frequency. (B) Phase

difference between vertical head displacement and head pitch angle as a function of walking velocity [Figure 5C from Hirasaki et al. (1999)]. (C) Boxplot of corrected

phase difference between vertical head acceleration and trunk pitch velocity as a function of predominant frequency. (D) Phase difference between vertical head

displacement and trunk pitch angle as a function of walking velocity [Figure 5B from Hirasaki et al. (1999)].

longer distances. However, the observed differences for short
bouts could also have other causes: On the one hand, these bouts
could consist of false positive steps detected during cycling. With
a larger annotated dataset it should be possible to develop a more
refined step detection approach, possibly involving machine
learning techniques or GPS data. Special care needs to be taken
in order to faithfully detect slow or asymmetric gaits if the
goal is to develop a diagnostic tool. On the other hand, it is
possible that this in an artifact of the spectral analysis used for
determining predominant frequency, which analyses segments of
5 s length in order to achieve the desirable frequency resolution.
This choice arguably influenced the analysis of very short bouts
as non-locomotion data was included in the transform window.
Yet, for the analysis of elderly people and pathological gaits, short
bouts are of paramount importance, as they make up most of
the daily walking activity (Schimpl et al., 2011). Special frequency
analysis techniques for non-stationary data such as the empirical
mode decomposition Huang et al., 1998 could help circumvent
this issue.

Attenuation of accelerations from trunk to head was stronger
in AP and ML directions than in the V direction (Figure 5),
consistent with previous reports (Kavanagh et al., 2005; Mazzà
et al., 2009). The reason for this is that the kinematic chain
of the upper body aims at minimizing horizontal accelerations
in order to stabilize the head in space. Compared with the

results of Mazzà et al. (2009) we observed stronger attenuation
in the V direction; this could be due to characteristics of our
uncontrolled environment such as inclusion of stair walking.
Buckley et al. (2015) observed that attenuation of accelerations
in the ML direction was significantly lower in patients with
Parkinson’s disease when compared with healthy controls. This
deterioration in patients seems to indicate that attenuation
of lateral accelerations is due to active stabilization and not
simply biomechanical constraints of the head-trunk chain.
Attenuation strengths in AP and ML directions also showed a
dependence on predominant frequency, exhibiting the highest
values around 2 Hz. To the best of our knowledge, this
is the first time that ACs were characterized as a function
of predominant frequency. These results suggest that the
attenuation of horizontal head accelerations is tuned to the
fundamental frequency of locomotion and that the quantification
of this attenuation could be used as an ecologically valid objective
measure of head stability.

Regularity of motion as measured by the HR was consistent
with previous reports (Menz et al., 2003), although we found
higher variances in all directions of motion (Figure 6). This could
be explained by the fact that a significant effect of environmental
factors such as walking on uneven surfaces (Menz et al., 2003) or
unilateral limb loading (Bellanca et al., 2013) on the measured
HRs has been observed. Previous studies found significantly
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lower HRs at both trunk and head between patients with MS
(Psarakis et al., 2018) or PD (Latt et al., 2009; Lowry et al.,
2009) and healthy controls, although there have been differing
reports in the case of PD (Buckley et al., 2015). We observed
an increase in HRs with predominant frequencies above 2 Hz,
most prominently in the AP and V directions, in accordance
with earlier reports (Menz et al., 2003). Based on these findings,
we conclude that the HR might be a suitable measure of head
stabilization in a real-world context.

The similarity between vertical head acceleration and head
pitch and between head pitch and trunk pitch as measured by
the coherence was maximal at predominant frequencies around
2.2 Hz (Figure 7). This is in line with previous reports (Hirasaki
et al., 1999) which observed the highest coherence values at
walking speeds above the most common gait velocity of 1.4
m/s. Compared to their results, we measured lower means and
higher standard deviations of coherence values across the entire
range of analyzed predominant frequencies. These differences
can be explained by the fact that Hirasaki et al., 1999 analyzed
steady-state walking on a treadmill with a target for gaze fixation.
High coherences are associated with compensatory head motion
aimed at maintaining gaze stability (Hirasaki et al., 1999). In a
real-world setting, often characterized by intermittent walking
and frequent gaze shifts, it is not surprising that overall lower
coherence values are observed. Lower coherences have also been
linked to vestibular deficits (Pozzo et al., 1991), suggesting a
possible applicability of this measure in a clinical context.

Phase differences between vertical head acceleration and
head/trunk pitch were distributed around −50◦ across the entire
analyzed range of predominant frequencies (Figure 8). This is
partly consistent with previous studies (Hirasaki et al., 1999),
however these studies reported an effect of walking velocity on
the phase difference which we did not observe. Similar to the
coherence, we hypothesize that the observed differences are due
to our measurement scenario lacking a target for gaze fixation.
We are not aware of any studies investigating phase differences
of subjects with gait, balance or neurological disorders.

With the exception of phase differences, all analyzed
metrics indicated strongest head stabilization around 2 Hz,
corresponding to the preferred walking speed of the participants.
We also observed the lowest variances of these measures in this
range, in line with previous reports by Wuehr et al. (2013) who
showed that coefficients of variation of gait parameters such as
stride time and stride length are lowest at self-selected walking
speeds. Additionally, they measured higher variances in patients
with cerebellar ataxia, especially outside of the range of preferred
speeds, raising the question whether similar effects could occur
for parameters of head stability.

Another disorder characterized by movement deficits is
autism spectrum disorder (ASD) (Trevarthen and Delafield-
Butt, 2013). Children diagnosed with ASD exhibit atypical
motor patterns that can be identified using machine learning
techniques with great accuracy (Anzulewicz et al., 2016).
Computer-vision based tracking of head motion revealed that
magnitude and velocity of head turning as well as velocity
of head inclination are greater in children with ASD than
in healthy controls (Cassell et al., 2018). This difference

was especially evident when subjects watched video of social
stimuli. Therefore, assessment of head motion during real-world
social interactions could be a valuable tool for ASD diagnosis
and research.

It should be noted that the size and makeup of our sample
of participants is a possible source for bias. The sample included
exclusively young subjects which facilitated comparison with
previously reported results. In contrast, a normative dataset
for comparison with diseased populations will likely have to
include older subjects. A longer measurement period (at least
one week) could also be helpful in increasing the significance
of findings. Furthermore, neither the gravity estimation nor the
step detection algorithm have been independently validated and
we did not control for movement of the sensors relative to
head or trunk. However, all analyses performed in the aligned
coordinate system are largely robust to small shifts in sensor
position. The other concerns can be addressed in the study design
of future studies.

In conclusion, we have shown that several previously
described head stability parameters, when measured in an
ecologically valid context, exhibited characteristics similar to
those obtained in a laboratory setting.We have also characterized
these parameters in function of predominant frequency as a
proxy for walking speed (Figures 5–8). Nevertheless, we found
some critical differences that could be attributed to features
unique to the real-world context. Real-world measurements of
attenuation coefficients were comparable to those previously
obtained in a laboratory setting (Mazzà et al., 2009), as
were measurements of harmonic ratios (Menz et al., 2003).
We could also replicate previously reported characteristics
of coherences and phase differences (Hirasaki et al., 1999).
Most of these measures have been shown to have value for
diagnostic purposes or as endpoints for clinical trials. Our results
indicate that the evaluated parameters are largely robust to
characteristics that are usually absent in a laboratory context,
such as frequent and large shifts of gaze and attention, dual
tasking or walking with a companion. The data recorded in
this study could serve as a model for collecting normative
reference data of healthy individuals. Future studies will have
to address the direct comparison of ecologically valid head
stabilization parameters between healthy controls and patients
with gait, balance, or neurological disorders. This way, mobile
accelerometry could serve as a cheap and easy method to gain
clinically relevant insights.
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